confint_2group_diff
A range of functions to compute bootstraps for the mean difference
calculate_weighted_delta
calculate_weighted_delta (group_var, differences, resamples)
Compute the weighted deltas.
calculate_group_var
calculate_group_var (control_var, control_N, test_var, test_N)
compute_interval_limits
compute_interval_limits (bias, acceleration, n_boots, ci=95)
Returns the indexes of the interval limits for a given bootstrap.
Supply the bias, acceleration factor, and number of bootstraps.
compute_meandiff_bias_correction
compute_meandiff_bias_correction (bootstraps, effsize)
Computes the bias correction required for the BCa method of confidence interval construction.
Type | Details | |
---|---|---|
bootstraps | An numerical iterable, comprising bootstrap resamples of the effect size. | |
effsize | The effect size for the original sample. | |
Returns | bias: numeric | The bias correction value for the given bootstraps and effect size. |
compute_bootstrapped_diff
compute_bootstrapped_diff (x0, x1, is_paired, effect_size, resamples=5000, random_seed=12345)
Bootstraps the effect_size for 2 groups.
compute_meandiff_jackknife
compute_meandiff_jackknife (x0, x1, is_paired, effect_size)
Given two arrays, returns the jackknife for their effect size.
create_repeated_indexes
create_repeated_indexes (data)
Convenience function. Given an array-like with length N, returns a generator that yields N indexes [0, 1, …, N].
/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/fastcore/docscrape.py:225: UserWarning: Unknown section Keywords
else: warn(msg)
create_jackknife_indexes
create_jackknife_indexes (data)
Given an array-like, creates a jackknife bootstrap.
For a given set of data Y, the jackknife bootstrap sample J[i] is defined as the data set Y with the ith data point deleted.
Type | Details | |
---|---|---|
data | ||
Returns | Generator that yields all jackknife bootstrap samples. |